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ABSTRACT
Vegetation cover exerts a strong influence on the rate and severity of soil erosion. In Iceland, soil erosion is a 
major land management issue, with accelerating rates of degradation since human occupation. Current methods 
for erosion mapping and monitoring are costly and difficult to employ frequently over large regions. Satellite 
remote sensing can offer synoptic and systematic information on vegetation conditions useful in environmental 
monitoring. However, fine-scaled erosive features, such as small deflation patches, may not be easily identifiable 
in moderate resolution imagery (10-30 m). Here the integration of Unoccupied Aerial Vehicle (UAV), Sentinel-2, 
and field data is examined to bridge the gap between ground-based and spaceborne monitoring. High resolution 
(< 5 cm) UAV-based land cover maps are produced for six sites, achieving high overall accuracy (> 90%) 
compared to ground measurements. These data are upscaled via a regression model estimating bare soil cover, 
yielding good results (R2 = 0.81). Using land-monitoring data from the Icelandic National monitoring program 
GróLind, erosion severity classes are defined and mapped. This study highlights the potential of multiscale 
remote sensing for estimating sub-pixel landscape information and improving automated soil erosion mapping.
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YFIRLIT
Uppskölun fjarkönnunargagna frá flygildum til að fylgjast með jarðvegsrofi á norð austur hálendi Íslands.
Jarðvegsrof er eitt af stóru umhverfisvandamálum á Íslandi í dag og hefur hraði og alvarleiki jarðvegsrofs sterk 
tengsl við gróðurþekju. Núverandi aðferðir við kortlagningu og vöktun jarðvegsrofs á Íslandi eru kostnaðarsamar 
og erfitt er að beita þeim reglulega á stór svæði. Fjarkönnun með gervitunglamyndum getur veitt heildstæða 
mynd af ástandi gróðurs sem getur nýst við umhverfisvöktun.  Hins vegar getur verið erfitt að greina smágerðar 
rofmyndir, eins og rofdíla, í venjulegri upplausn gervitunglamynda (10-30 m). Í þessari rannsókn er samþætt 
notkun flygilda (e. Unoccupied Aerial Vehicle, UAV), Sentinel-2 gervitunglagagna og vettvangsgagna skoðuð 
sem möguleiki til að brúa bilið á milli athugana á jörðu niðri og gervitunglaathugana. Landþekja sex svæða 
var kortlögð í hárri upplausn (< 5 cm) með flygildi og gáfu niðurstöðurnar góða heildarnákvæmni (e. accuracy, 
>90%) samanborið við vettvangsmælingar. Þessar upplýsingar voru síðan skalaðar upp fyrir gervitunglagögn 
með aðhvarfslíkani (e. regression model) til að meta þekju óvarins jarðvegs, með góðum árangri (R2 = 0.81). Með 
notkun gagna úr landvöktunarkerfinu GróLind voru rofflokkar svo skilgreindir og kortlagðir út frá þekju óvarins 
jarðvegs. Rannsóknin sýnir fram á möguleikann á notkun fjölkvarða-fjarkönnunar til að meta landupplýsingar 
út frá myndeiningum og að sjálfvirknivæða kortlagningu jarðvegsrofs.    
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INTRODUCTION
Soil erosion is a geomorphic process through 
which soil particles (sediments, soil aggregates, 
and organic matter) are entrained and transported 
away from their primary location (Poesen 
2018). Through intense erosion, soils become 
less fertile as nutrients are removed (Arnalds 
et al. 2001). Natural erosive processes such as 
rain, wind, and gravity, as well as biological 
processes including trampling and burrowing by 
wildlife, are typical in most landscapes (Poesen 
2018). Anthropogenically induced changes in 
land use and climate, however, can amplify and 
accelerate erosion beyond the capability of an 
ecosystem to generate new soil, causing rapid 
landscape degradation (Borrelli et al. 2021, 
Poesen 2018).

Vegetation cover has a strong influence on 
the rate and severity of soil erosion (Durán 
Zuazo et al. 2008, Gyssels et al. 2005). 
Vegetation can shield erosion-prone soil from 
wind and precipitation and provide support 
against gravity on slopes, limiting soil loss 
(Tang et al. 2021). Vegetation composition, 
structure, and coverage are changing in many 
high latitude regions due to climate change 
and other anthropogenic pressures. The exact 
nature of these changes, however, and their 
impact on soil erosion is complex and not well 
understood (Myers-Smith et al. 2020, Streeter & 
Cutler 2020). Monitoring must be improved to 
better understand the impact of vegetation cover 
change on soil erosion and to effectively target 
restoration efforts, such as revegetation, toward 
areas showing early signs of erosion.

Regions of Iceland have experienced rapid 
and severe landscape degradation since human 
settlement in the 9th century, including dramatic 
loss in vegetation and increase in soil erosion 
(Arnalds 2015, Dugmore et al. 2009, Greipsson 
2012, Ólafsdóttir et al. 2001). This is particularly 
true for the Highland region, which encompasses 
remote wilderness areas above the potential 
treeline (approx. 200-400 m a.s.l, Boulanger-
Lapointe et al. 2022) and where sub-alpine 
tundra vegetation is dominant (Thórhallsdóttir 
1997). Grazing pressure increased dramatically 
in the Highland with animal husbandry 

accompanying human settlement, ~1,100 years 
ago (McGovern et al. 2007). The Highland is 
most sensitive to this change, due to the short 
growing season and disturbance from glacial 
and volcanic activity (Arnalds et al. 2023, 
Dugmore et al. 2009). Disturbed vegetation 
in this region is slow to recover, leaving soil 
exposed to further disturbance. The soils found 
in much of the Highland tend to lack strong 
cohesive properties and are easily entrained 
by frequent, strong winds (Arnalds 2015). The 
result is the poor land conditions seen in many 
parts of Iceland today, with over 39% of the 
country’s total area considered to be eroded as 
of 2001 (Arnalds et al. 2001, 2023).

Currently, the main source of geospatial 
erosion data for Iceland comes from a series 
of maps produced between 1991 and 1997 
by the Agricultural Research Institute (ARI) 
and the Soil Conservation Service of Iceland 
(SCSI; now Land and Forest Iceland), using 
field observations and manual interpretation 
of Landsat 5 imagery. The project produced 
coarse resolution products that categorized 
erosion severity into 6 classes according to the 
areal coverage of landscape features indicative 
of active erosive processes, for example 
Rofabards (escarpments), erosion spots, and 
sand encroachment (Arnalds et al. 2001, 
Arnalds 2015). These maps provide critical 
quantification of land conditions on a wide 
scale. However, in the 27 years since these maps 
were produced, it is likely that land conditions 
have changed in many regions. This includes 
both the progression and regression of soil 
erosion. Thus, the ability to accurately examine 
and analyze current land conditions using these 
maps is limited (Arnalds et al. 2023).

Satellite imagery and machine learning are 
important tools that have improved the accuracy 
and efficiency of many monitoring and mapping 
tasks, including those related to soil erosion 
(Sepuru & Dube 2018). Such tools have been 
applied to regions of Iceland in previous studies. 
Fernández et al. 2022 highlighted the potential 
of remote sensing for this application, using 
Sentinel-2 imagery alongside topographic data 
to predict erosion risk from field observations 
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of erosion severity provided by the SCSI. 
While the results show good accuracy, nuanced 
information is lost in the broad 6-point 
classification scheme, and physical attributes 
important to management, such as vegetation 
cover, cannot be interpreted from the results.

The Normalized Vegetation Index (NDVI) is 
commonly used as a proxy for vegetation cover. 
NDVI takes advantage of the divergent spectral 
response of green vegetation in the red and near 
infrared (NIR) portions of the electromagnetic 
spectrum. In simple terms, when used as a proxy 
for vegetation cover, high NDVI values are 
interpreted as indicating dense, healthy green 
vegetation. Low NDVI values are interpreted 
as indicating a lack of vegetation and therefore 
the relative dominance of bare surface cover 
(Hurcom & Harrison 1998, Xiao & Moody 
2005). 

While NDVI can be well correlated with 
vegetation cover in some settings, this is not 
always the case, as NDVI values can be influenced 
by factors such as topography and vegetation 
phenology (Ayalew et al. 2020, Laidler et al. 
2008). Changing climate in the Arctic, which 
drives change in vegetation composition, further 
breaks down this relationship. In particular, the 
increase in tundra shrub cover is thought to 
inflate the near infrared (NIR) portion of the 
spectral profile and therefore the NDVI signal 
(Juszak et al. 2014). This means that, as shrubs 
encroach into an area experiencing erosion, loss 
of vegetation cover may be masked by their 
higher NDVI value (Kodl et al. 2024). Other 
vegetation indices (VIs), such as the Normalized 
Difference Red-Edge 1 (NDRE1), have shown 
promise in determining vegetation cover. 
Previous studies suggest that these VIs should 
be considered in addition to NDVI (Andreatta 
et al. 2022, Riihimäki et al. 2019). Furthermore, 
other VIs show better sensitivity than NDVI for 
tundra species, especially VIs using red-edge 
(RE) bands (Buchhorn et al. 2013, Liu et al. 
2017).  

Arctic tundra landscapes display a high 
degree of spatial heterogeneity, meaning that in 
moderate and coarse resolution satellite imagery 
various landscape features can occupy a single 

pixel (Virtanen & Ek 2014). As the spectral 
information of a pixel is an aggregate from the 
features within it, it can be difficult to disentangle 
the role that characteristics (e.g., areal coverage 
& configuration) of individual features have 
on spectral response from traditional field 
observations. Uncrewed aerial vehicles (UAVs) 
can produce very high-resolution imagery and 
continue to become more accessible for research 
and management communities. There are 
various ways in which UAV and satellite data 
can be used synergistically. One approach is the 
calibration of satellite data or models applied on 
satellite data using UAV data. This approach can 
be used as a form of data upscaling to expand on 
information initially derived from the UAV data 
and to offer an alternative to traditional field 
observations (Alvarez-Vanhard et al. 2021).

UAV data upscaling has been shown as 
an effective method for model calibration in 
fractional land cover problems relating to 
tundra and similarly heterogeneous landscapes 
(Bergamo et al. 2023, Riihimäki et al. 2019). 
By applying machine learning at multiple 
scales, linked through spatial aggregation, the 
dominance of sub-pixel physical characteristics 
can be estimated. Examples of the use of UAV to 
upscale previous applications include mapping 
fractional coverage of invasive shrub species 
in northern Estonia (Bergamo et al. 2023) and 
forage lichen in northern Canada (Fraser et al. 
2022).

It remains difficult to capture fine variation 
in soil erosion across large and remote regions 
like the Highland of Iceland. Field-based 
monitoring is labor intensive and coverage 
limited. Satellite imagery offers broad coverage, 
but sub-pixel heterogeneity is obscured. UAV 
imagery provides the potential to bridge the 
gap between these two scales by linking fine 
resolution information to satellite data. The aim 
of this study is to examine the integration of 
UAV and satellite data through upscaling, as a 
means for estimating bare soil and rock cover 
(hereafter refer to as bare soil cover) for soil 
erosion monitoring. This is accomplished by 
using UAV scale image classification to train 
a satellite-based model that estimates bare soil 
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cover. The relationship between bare soil cover 
and erosion severity in existing, field based, 
land monitoring data is used to classify erosion 
severity from the satellite-scale model. The 
goal of this approach is to provide a framework 
for improved and automated mapping of soil 
erosion across the Highland of Iceland.

MATERIALS AND METHODS
Study site
The study was conducted at six sites located 
in northeastern Iceland (Figure 1). Sites 
were randomly chosen in the Múlaþing and 
Norðurþing areas of the Highland, above 400 m 
elevation (Arnalds et al. 2023). All sites are 
located within open sheep grazing commons 
(Arnalds & Barkarson 2003). The Möðrudalur 
weather station nearby shows a mean annual 
temperature of 1.30 °C and mean monthly wind 
speed of 0.97 m s-1 from 2007 to 2023 (Icelandic 
Meteorological Office 2024). Vegetation types 

in the region are a mix of heath, grasslands, 
moss heaths and wetlands (Kardjilov et al. 
2006). The UAV survey sites encompass a 
range of erosion severity, from fully vegetated 
to severely eroded areas (Arnalds et al. 2001). 
Soils in the regions are Andosolic and Vitrisolic, 
the former characterized by high carbon 
content, low bulk density and high water storage 
capacity, whereas the latter is characterized by 
low organic material and clay content, with 
low water storage capacity. Andosols support 
some of the most densely vegetated regions 
of Iceland, whereas Vitrisols support little 
biological activity, meaning that soils of this 
type are exposed to transport by wind and water 
(Arnalds 2015, Arnalds & Óskarsson 2009).

Data and pre-processing 
UAV and Sentinel-2 Imagery
In July 2023, imagery was collected along 
six 1.4 - 3.1 km transects in eastern Iceland. 
Transects were used to capture as much within-

Figure 1. Location of UAV survey sites, northeastern Iceland. Survey sites marked with orange dashed lines. 
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site variance while maintaining consistent 
elevation for each site to limit variation in 
environmental factors. The RGB sensor onboard 
a DJI Mavic 3T quadcopter UAV was used, with 
the red band at 650 nm (±16 nm) the green at 
560 nm (±16 nm) and the blue at 450 (±16 nm). 
The UAV was flown at approximately 80 m 
above ground level. Images were set to capture 
80% front overlap. The width of each transect 
was approximately 60  m. Best attempts were 
made to conduct all flights around solar noon, 
however, due to weather, flight times varied 
by up to 5 hours. Differences in illumination, 
however, were minimal due to the long daylight 
hours during this time of year.  

The UAV data were processed in Agisoft 
Metashape version 2.1.0. Photogrammetric 
processing was applied following the 
recommended steps from the software 
developers (Agisoft LLC., St. Petersburg, 
Russia). Images containing excessive motion 
blur were removed prior to processing. 
Georeferencing was based on the GPS unit and 
internal measurement unit onboard the UAV, 
producing an estimated horizontal positioning 
error of ~3 m. This process produced a single 
orthomosaic for each of the six transects with 
spatial resolutions of 4-5 cm. 

Sentinel-2 data for the region was acquired 
in 16-bit from the Sentinel-2 Global Mosaic 
Service, using the Advanced Temporal Mosaic 
tool. The temporal range was set between 31 
July 2023 and 31 August 2023, returning level 
2A imagery from 9 August and 29 August 2023. 
The SEN2COR atmospheric correction method 
and ESA cloud mask options were used (Main-
Knorn et al. 2017, Sentinel-2 Global Mosaic 
Service 2014).

Vegetation indices 
To provide more information to the UAV-
scale model and improve vegetation and soil 
separability, two RGB VIs were calculated 
using the terra package for R v4.2.2 (Hijmans 
2023, R Core Team 2022). The two VIs, 
VIgreen and EXGR, were selected based on 
their ability to effectively separate bare soil and 
vegetation, demonstrated in a previous study 

(Vieira & Rodrigues 2021). To calculate these 
VIs the RGB data was first normalized with a 
two-step process using equations 1 and 2, where 
R, G, and B are the original values, Rmax, Gmax, 
and Bmax are the maximum of the 8-bit channels 
(255), and r, g, and b are the final normalized 
spectral components (Guijarro et al. 2011, 
Marcial-Pablo et al. 2019, Vieira & Rodrigues 
2021). The VIs were then calculated using 
equations presented in Table 1.

(1) 

 

6 

Vegetation indices  197 

To provide more information to the UAV-scale model and improve vegetation and soil 198 

separability, two RGB VIs were calculated using the terra package for R v4.2.2 (Hijmans 2023, 199 

R Core Team 2022). The two Vis, VIgreen and EXGR, were selected based on their ability to 200 

effectively separate bare soil and vegetation, demonstrated in a previous study (Vieira & 201 

Rodrigues 2021). To calculate these VIs the RGB data was first normalized with a two-step 202 

process using equations 1 and 2, where R, G, and B are the original values, Rmax, Gmax, and Bmax 203 

are the maximum of the 8-bit channels (255), and r, g, and b are the final normalized spectral 204 

components (Guijarro et al. 2011, Marcial-Pablo et al. 2019, Vieira & Rodrigues 2021). The VIs 205 

were then calculated using equations presented in Table 1. 206 

 207 

(1) 208 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛 = 𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛 = 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  209 

(2) 210 

𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛+𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛

 𝑔𝑔𝑔𝑔 = 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛+𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛

 𝑏𝑏𝑏𝑏 = 𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛+𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛

 211 

 212 

Four VIs were calculated with the Sentinel-2 data to be used in the satellite scale model. As with 213 

the UAV Vis, these indices are meant to emphasize vegetation and to improve bare soil detection. 214 

GCI, MSAVI2 and NDVI were selected based on their performance when previously applied to 215 

identify overgrazing hotspots (Table 2, Harmse et al. 2022). Additionally, NDRE1 was selected 216 

based on its potential shown in a previous study to identify bare soil and performance in regions 217 

of low vegetation cover (Table 2, Andreatta et al. 2022). Sentinel-2 bands 5 and 6 are 20 m 218 

resolution and therefore were resampled, using a bilinear approach, to match the 10 m resolution 219 

of the remaining bands used. 220 

In-situ bare soil cover measurements 221 

To compare bare soil cover estimates based on the UAV classification to those that would be 222 

recorded by a field technician, ten randomly selected points along each transect were overlaid 223 

with a 50 cm-by 50 cm quadrat, prior to each UAV flight. An image of each quadrat placement 224 

was taken at waist height (~105 cm) with a digital camera (Figure 2), and the percent bare soil 225 

   
(2) 

 

6 

Vegetation indices  197 

To provide more information to the UAV-scale model and improve vegetation and soil 198 

separability, two RGB VIs were calculated using the terra package for R v4.2.2 (Hijmans 2023, 199 

R Core Team 2022). The two Vis, VIgreen and EXGR, were selected based on their ability to 200 

effectively separate bare soil and vegetation, demonstrated in a previous study (Vieira & 201 

Rodrigues 2021). To calculate these VIs the RGB data was first normalized with a two-step 202 

process using equations 1 and 2, where R, G, and B are the original values, Rmax, Gmax, and Bmax 203 

are the maximum of the 8-bit channels (255), and r, g, and b are the final normalized spectral 204 

components (Guijarro et al. 2011, Marcial-Pablo et al. 2019, Vieira & Rodrigues 2021). The VIs 205 

were then calculated using equations presented in Table 1. 206 

 207 

(1) 208 

𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛 = 𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛 = 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  209 

(2) 210 

𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛+𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛

 𝑔𝑔𝑔𝑔 = 𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛+𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛

 𝑏𝑏𝑏𝑏 = 𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛+𝐺𝐺𝐺𝐺𝑛𝑛𝑛𝑛+𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛

 211 

 212 

Four VIs were calculated with the Sentinel-2 data to be used in the satellite scale model. As with 213 

the UAV Vis, these indices are meant to emphasize vegetation and to improve bare soil detection. 214 

GCI, MSAVI2 and NDVI were selected based on their performance when previously applied to 215 

identify overgrazing hotspots (Table 2, Harmse et al. 2022). Additionally, NDRE1 was selected 216 

based on its potential shown in a previous study to identify bare soil and performance in regions 217 

of low vegetation cover (Table 2, Andreatta et al. 2022). Sentinel-2 bands 5 and 6 are 20 m 218 

resolution and therefore were resampled, using a bilinear approach, to match the 10 m resolution 219 

of the remaining bands used. 220 

In-situ bare soil cover measurements 221 

To compare bare soil cover estimates based on the UAV classification to those that would be 222 

recorded by a field technician, ten randomly selected points along each transect were overlaid 223 

with a 50 cm-by 50 cm quadrat, prior to each UAV flight. An image of each quadrat placement 224 

was taken at waist height (~105 cm) with a digital camera (Figure 2), and the percent bare soil 225 

  
Four VIs were calculated with the Sentinel-2 data 
to be used in the satellite scale model. As with the 
UAV VIs, these indices are meant to emphasize 
vegetation and to improve bare soil detection. 
GCI, MSAVI2 and NDVI were selected based 
on their performance when previously applied to 
identify overgrazing hotspots (Table 2, Harmse 
et al. 2022). Additionally, NDRE1 was selected 
based on its potential shown in a previous study 
to identify bare soil and performance in regions 
of low vegetation cover (Table 2, Andreatta et 
al. 2022). Sentinel-2 bands 5 and 6 are 20 m 
resolution and therefore were resampled, using a 
bilinear approach, to match the 10 m resolution 
of the remaining bands used.

Table 1. Description of RGB vegetation indices used 
for UAV scale classification.
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Vegetation 
Index Green

VIgreen=
 g – r 

                ________

               
 g + r

(Gitelson et 
al. 2002)

Excess Green 
minus Excess 
Red

EXGR = (2g – r–b) – (1.4r – g) (Meyer & 
Neto 2008)
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Table 1. Description of RGB vegetation indices used for UAV scale classification. 704 

Name Equation References 

Vegetation Index 

Green 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =

𝑔𝑔𝑔𝑔 −  𝑟𝑟𝑟𝑟
𝑔𝑔𝑔𝑔 +  𝑟𝑟𝑟𝑟

 (Gitelson et al. 2002) 

Excess Green minus 

Excess Red 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = (2𝑔𝑔𝑔𝑔 − 𝑟𝑟𝑟𝑟 − 𝑏𝑏𝑏𝑏) − (1.4𝑟𝑟𝑟𝑟 − 𝑔𝑔𝑔𝑔) 

 

(Meyer & Neto 2008) 
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Name Formula Bands References 

Green 

Chlorophyll 

Index 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑉𝑉𝑉𝑉 = (
𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

) − 1 8,3 (Gitelson et 

al. 2005) 

Modified Soil 

Adjusted 

Vegetation 

Index 2  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2 =
2 ∗ 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 1�(2 ∗ 𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 1)2 − 8(𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅)

2
 

8,4 (Qi et al. 

1994) 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
(𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅)

 
8,4 (Tucker 

1979) 

Normalized 

Difference Red 

Edge 1 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 =
(𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸740 − 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸705)
(𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸740 + 𝑅𝑅𝑅𝑅𝐸𝐸𝐸𝐸705)

 
6,5 (Gitelson & 

Merzlyak 

1994) 
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was taken at waist height (~105 cm) with a 
digital camera (Figure 2), and the percent bare 
soil within the quadrat was recorded. For later 
identification of the exact quadrat placements in 
the UAV imagery, a flag was placed at the center 
of each quadrat, and the location was recorded 
with a Garmin Etrex 10 handheld GPS unit with 
an average positional error of ~5 m.

Each quadrat placement was identified in the 
orthomosaics, and a 50 cm-by 50 cm polygon was 
drawn around the flag, using the corresponding 
field photograph to inform polygon delineation. 
To arrive at a classification-based bare soil 
cover value that could be directly compared to 
the field observation, the percent of bare soil 
cover was calculated for each polygon, using 
the zonal histogram tool in QGIS v3.28 (QGIS 
Development Team 2009). The classification-
based estimate was evaluated using Root Mean 
Square Error (RMSE).

Soil erosion data
GróLind is the most extensive and up to date land 
monitoring initiative from the Soil Conservation 
Service of Iceland (now Land and Forest 

Iceland). Each monitoring site consists of a 50 
x 50 m plot. Approximately 200 sites are visited 
annually, resulting in a five-year revisit time 
for each site. At these sites variables relating 
to ecological status are recorded, including 
vegetation height and cover, soil depth, soil 
type, and erosion rating (Marteinsdóttir et al. 
2021). The erosion rating is based on the system 
outlined by Arnalds et al. (2001) which considers 
erosional features, typically defined by areas 
of exposed soil, such as sand encroachment, 
erosion spots, and Rofabards, as well as general 
vegetation cover. This system uses qualitative 
visual observations classified on a five-point 
scale, with 0 representing no erosion and 5 
representing extreme erosion. Vegetation cover 
is also estimated based on visual observation 
on a scale of 1-5 (i.e. 1: 91-100%; 2: 67-90%; 
3: 34-66%; 4: 11-33%; 5: 0-10%). For our 
analysis, we considered vegetation cover as a 
proxy of bare soil cover, since the total cover 
at one site is only made of vegetation and bare 
soil, including exposed rocks (e.g. a vegetation 
cover rating of 1 means both high vegetation 
cover and low bare ground cover). We used data 

Table 2. Description of Sentinel 2 vegetation indices used for the satellite scale regression model.
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from sites visited in 2019 (n=79) to examine the 
relationship between erosion severity and bare 
soil cover (Figure 3d).

UAV and satellite data processing 
UAV-scale classification
For the UAV-scale classification training and 
validation, data were generated for 5 class 
types: bare soil (dark), bare soil (light), green 
vegetation, non-green vegetation (e.g. white 
lichen, flowers), and water (Figure S1). The 
goal of using these classes rather than a binary 

bare soil presence-absence scheme was to 
reduce error by providing narrow classes with 
less variation in spectral signature. Along 
each transect ten 50  x 50  cm polygons were 
manually delineated for each class, in QGIS 
(QGIS Development Team 2009), resulting 
in 50 polygons per transect. The location of 
the polygons was determined by examining 
the RGB orthomosaics and selecting areas of 
homogeneous, class representative cover. 

The two VIs, of the normalized RGB bands 
and the raw orthomosaic RGB bands, were used 

UAV SOIL EROSION MONITORING IN HIGH-LATITUTE RANGELANDS

Figure 2. Example of quadrat placements used for field validation of the UAV-scale classification. 
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as predictive variables. Each pixel within the 
polygons (~360 per polygon) was sampled to 
extract values for these variables. This provided 
approximately 18,000 sampled points per 
transect. These data were split randomly into 
training (70%) and validation (30%) sets, using 
a stratified approach to ensure an equal number 
of training and validation points between the 
five classes.

A random forest classification model was 
implemented using the caret and randomForest 
packages in R (Kuhn 2008, Liaw & Wiener 

2002). Random forest was chosen based on the 
accuracy of the model for classifying land cover 
from RGB UAV imagery that was demonstrated 
in previous studies (Bergamo et al. 2023, Fraser 
et al. 2022). An individual model was fit for 
each transect to improve site-specific accuracy 
due to the previously-mentioned variation in 
illumination conditions (Kodl et al. 2024). Since 
an independent testing dataset was not available, 
a 10-fold cross validation, which provides good 
prediction estimates (Wadoux et al. 2021), was 
used to test model accuracy. The number of 

Figure 3. Workflow for UAV data upscaling and erosion severity mapping. a) UAV data treatment after 
preprocessing, b) Sentinel-2 satellite data treatment, c) UAV and Sentinel-2 satellite data integration, d) 
integration of GróLind data for erosion severity mapping.  
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variables to randomly sample at each split, a 
parameter known as mtry, was optimized using 
a grid search, testing values between 1 and 8.  
The number of trees was set to a constant of 500. 
A confusion matrix was produced for each site 
using the validation data.  Accuracy and Kappa 
values were used to assess model performance. 
The model with optimal parameterization for 
each site was applied to a stack of raster layers 
containing the eight variables.  

Upscaling
To upscale the UAV-scale classification, a 
within-pixel coverage method was used to 
find percent bare soil (Bergamo et al. 2023, 
Riihimäki et al. 2019). A grid was generated 
directly from the Sentinel-2 data to match 
the 10-m spatial resolution. Segments of this 
grid were clipped to match the extent of each 
transect. The zonal histogram tool in QGIS was 
used to compute the number of pixels in the 
UAV-scale classification assigned to each of 
the five classes, within each grid cell. The two 
bare soil classes were merged and compared to 
the occurrence of the remaining classes within 
each grid cell to determine the percent bare soil 
coverage (0-100).  

Satellite-scale regression model
A point was placed at the center of each grid 
cell produced in the upscaling process. The 
calculated percent bare soil for each cell was 
then transferred to the corresponding point. The 
values from each of the Sentinel-2 variables, 
bands 2-8, and the four VIs were sampled at 
each point. This produced 18,287 data points. 
These data were split into training (70%) and 
validation (30%) sets.

A random forest regression model was 
implemented on the training data using the 
caret and randomForest packages in R (Kuhn 
2008, Liaw & Wiener 2002). Random forest 
was chosen based on its accuracy in upscaling 
applications presented in previous studies 
(Fraser et al. 2022). A model fitting procedure, 
like that used for the UAV-scale classification 
model, was implemented with 10-fold cross 
validation. The mtry parameter was optimized 

using a grid search with values between 1 and 11. 
The number of trees was set to a constant of 500. 
The best model was chosen based on RMSE and 
R2. The best model was run on the validation set, 
and the RMSE and R2 were calculated to assess 
the model’s predictive performance. The final 
model was applied to a stack of raster layers 
containing the 11 variables. 

Erosion severity
The GróLind data were subset to contain only 
points within the Highland region (above 400m 
elevation), leaving 76 sites collected in 2019. 
A Pearson correlation test was run to establish 
if there is a significant relationship between 
the erosion severity and bare soil cover data 
that was collected in the field by the GróLind 
program. The results indicated a strong 
positive and significant relationship (r = 0.82, p 
< 0.005). A linear regression was fit to estimate 
erosion severity from bare soil cover in this 
dataset. The satellite-scale continuous bare 
soil cover model was then reclassified to the 
five-point bare soil cover ranking used by the 
GróLind program, and the linear regression 
was applied to these data to estimate soil 
erosion severity for each pixel in the satellite 
images. Non-whole values of erosion severity 
were reclassified to the nearest whole number 
to fit the five-point GróLind classification 
scheme (e.g. 1.5 → 2).

RESULTS
UAV-scale classification
The random forest classifier produced an overall 
accuracy of 96.6% across all six sites with a 
Kappa of 0.95 and RMSE of 15.36% (Table 
3; see Table S1 for confusion matrix and F-1 
scores). The best results were achieved at site 
400-5, with an accuracy of 98.6% and Kappa 
of 0.98. The lowest results were achieved at 
site 400-3 with an accuracy of 92.2%, a Kappa 
of 0.90, and RMSE of 40.17%. Aside from 
site 400-3, all sites achieved accuracy greater 
than 95%, Kappa scores greater than 0.94, and 
RMSE less than 9%. 

UAV SOIL EROSION MONITORING IN HIGH-LATITUTE RANGELANDS
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Upscaling UAV data 
Relatively large erosional features, where 
continuous areas of bare soil are exposed, are 
well represented in both the UAV classification 
and the aggregated data (Figure 4). Away 
from the center of these features, exposed soil 
becomes fragmented and appears in smaller 
patches as vegetation cover increases. This 
pattern is distinct in the UAV-scale classification 

results. Due to the aggregation inherent in the 
upscaling process, however, this pattern is 
obscured when the pixel size becomes much 
larger than individual erosional patches. While 
the aggregated data tend to show the pattern of 
increased vegetation with distance away from 
erosional features, the distribution of exposed 
soil within a cell is lost (Figure 4).

Table 3. Summary of the accuracy results for UAV-scale classification at each site and overall. accuracy and 
Kappa based on cross validation, RMSE based on quadrat fractional coverage. Due to human error in the field 
the quadrat points for two sites (400-1, 400-5) fell outside of the UAV imagery as a result the quadrat based 
RMSE values for those two sites could not be calculated.

Classification metrics Field data metric
Site Accuracy (%) Kappa RMSE (%)
Overall 96.6 0.95 15.36
400-1 97.4 0.97 6.67
400-3 92.2 0.90 40.17
400-4 96.6 0.94 -
400-5 98.6 0.98 -
500-3 97.8 0.97 8.78
500-6 97.0 0.96 5.76

Figure 4. UAV-scale classification of bare soil shown in black (presence of bare soil), overlain with fractional 
bare soil coverage produced from aggregation during the upscaling process, site 400-3. Black arrow on the left 
panel shows an example of an erosional feature edge being obscured due to aggregation. 
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Satellite regression and erosion severity
The satellite-scale percent bare soil cover 
regression model produced an R2 of 0.814 for all 
sites (Figure 5a). The site-specific results show 
a wide range of R2 values. Site 400-1 (Figure 
5b) produced the lowest R2 (0.403), showing 
a large number of points estimated to have a 
greater bare soil and cover than classified in the 

UAV data. Site 500-3 produced the highest R2 
(0.924). The final bare soil cover map (Figure 
6a) displays upscaled results, allowing for visual 
interpretation as well as identification of gaps 
and errors. The soil erosion rating map (Figure 
6b) presents those same results using the SCSI 
classification scheme.

UAV SOIL EROSION MONITORING IN HIGH-LATITUTE RANGELANDS

Figure 5. Scatter plots showing the percent bare soil coverage from the satellite-scale regression 
model (predicted) compared to the aggregated UAV-scale classification (observed), best fit line 
shown in orange. Top (a) panel shows the results for all six sites overall. Bottom (b-g) panel shows 
the results at each site. 
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Figure 6. a) Percent bare soil cover map from upscaled UAV data, b) erosion severity map derived from the 
upscaled bare soil cover ranked using the GróLind erosion severity classes. 
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DISCUSSION
This study illustrates the potential of integrating 
UAV and satellite data to extract physical 
parameters, in this case vegetation cover, for 
mapping and monitoring soil erosion in tundra 
environments. The methods presented here 
show that UAV data upscaling with a random 
forest regression model can provide continuous 
estimates of percent bare soil cover at the 
satellite pixel scale. The use of UAV data in this 
way could provide a cost-effective alternative 
to on-foot field measurements and produce 
high quality training data for semi-automated 
mapping from satellite imagery. Parameters 
upscaled from UAV data could be integrated 
with existing soil erosion data generated by the 
ongoing GróLind program to expand the scope 
beyond measured locations (Bergamo et al. 
2023).

UAV-scale classification
The UAV-scale random forest classifications 
based on RGB VIs were able to separate bare 
soil and vegetation with accuracies comparable 
to multispectral UAV based classifications 
(Furukawa et al. 2021). The use of multiple 
VI’s and a five-class scheme builds upon results 
of previous studies that implemented a binary 
scheme on RGB digital number data alone 
(Riihimäki et al. 2019). Due to the single-
image width of the orthomosaics used in this 
study, digital elevation models (DEMs) could 
not be generated for the UAV sites. The use 
of such DEMs in the UAV-scale classification 
could further improve accuracy by generating 
point clouds that can be used to assess textural 
information (Bergamo et al. 2022). 

The site-specific classification accuracy 
shows low variation, with a range of 6.4% and 
0.08 in accuracy and Kappa measures among 
sites, respectively. Other studies that have 
implemented RGB UAV data for vegetation 
classification tasks show similar results across 
a range of environmental settings (Bergamo et 
al. 2023, Furukawa et al. 2021, Riihimäki et al. 
2019). The low variation in accuracy between 
sites may be due in part to the site-specific 
model approach taken here. While fitting an 

individual model for each site is more time 
consuming, compared to fitting a single model 
across all sites, it likely limits the error induced 
by variations in illumination and weather 
conditions (Furukawa et al. 2021, Wang et al. 
2023). This is an important consideration for 
implementing these methods across a broader 
area and in regions where weather can change 
dramatically over short periods, such as in 
northeastern Iceland.

Upscaling and satellite scale mapping 
The satellite-scale random forest regression 
model shows high overall agreement (R2 = 
0.814) with the UAV based bare soil cover data 
(Figure 4 & 5a). These results highlight the 
usefulness of these models for estimating bare 
soil cover across a Sentinel-2 pixel. Previous 
studies have illustrated the power of random 
forest regression for estimating fractional 
cover of invasive plant species from satellite 
data, producing accuracy like that shown here 
(Kattenborn et al. 2019, Shiferaw et al. 2019). 
While random forest regression appears to 
be a robust model for UAV upscaling, based 
on these results and those of previous studies, 
various models should be examined through 
more-exhaustive performance measures and 
for variables beyond those related to vegetation 
(Fraser et al. 2022, Kattenborn et al. 2019) 

The site-specific regression accuracies show 
large variations, with R2 values much lower than 
the overall value. The lowest R2 (0.403) was 
produced at site 400-1 (Figure 5b). Site 400-1 
is characterized by a consistent pattern of many 
small bare soil patches (5 - 20 cm diameter) and 
a high degree of non-green vegetation cover 
(i.e. areas covered by white lichen or flowering 
plants), which are common in Iceland. The VI’s 
used for the satellite-scale regression model 
largely rely on the NIR and red bands, as do 
most widely used VI’s. The spectral signature 
produced by non-green vegetation at these 
wavelengths is not as easily distinguished from 
bare soil as is green vegetation (French et al. 
2008). This is likely why the model predicts 
higher bare soil cover at site 400-1 than is shown 
in the UAV data. The inclusion of shortwave 

UAV SOIL EROSION MONITORING IN HIGH-LATITUTE RANGELANDS
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infrared (SWIR) information or indices may 
improve the performance of the model for areas 
dominated by non-green vegetation, but that 
would come at the expense of spatial resolution. 
Green and non-green vegetation show increased 
separability in the 2200 nm range, thus the 
use of Sentinel-2 band 12 (2190 nm) could 
be used in future applications where higher 
spatial accuracy is not a prerequisite (Amin et 
al. 2021). Despite the lack of NIR and SWIR 
information in the UAV data, the classification 
achieved good results in separating bare soil 
and non-green vegetation for site 400-1 (Table 
3). This is likely due to the high resolution 
of the UAV data, suggesting that increased 
resolution may be able to improve separability 
of spectrally similar cover types. Therefore, 
higher resolution multispectral satellite data, for 
example PlanteScope (3 m), may better detect 
non-green vegetation.

Finally, the UAV sites largely missed regions 
of very dark sands and gravel, like those near 
site 400-4 and 400-5 (Figure 1). In the bare soil 
cover map produced by the upscaling process 
(Figure 6a), regions with this composition appear 
to have higher vegetation cover than expected. 
As a result, the erosion severity assigned to these 
areas tends to be lower than anticipated. While the 
sampling design was meant to capture changes 
in relation to the elevational gradient, a different 
sampling strategy would be needed to capture the 
spectral signature of these distinct areas.

Future work
While the fraction of bare soil to vegetation 
cover over a given area is strongly related in 
many areas to soil erosion, it is not the sole factor 
(Zhongming et al. 2010). This study has shown 
UAV RGB data upscaling to be an effective 
method for estimating variables related to soil 
erosion. In addition to improving estimates of 
bare soil cover, future efforts should investigate 
additional parameters such as soil moisture, soil 
surface roughness and phenological stages that 
may benefit from upscaling. Looking to existing, 
robust, empirical models, such as the Revised 
Universal Soil Loss Equation (RUSLE), for 
parameters that may relate to physical factors 

that can be derived and upscaled from UAV data 
provides a promising path forward (Felix et al. 
2023).  

Vegetation parameters that relate to soil 
erosion and that may be explored using methods 
like those presented here include vegetation 
type and structure. Erosion severity influences, 
and is influenced by, the types of vegetation 
present as well as their distributions over a 
given area (Jiao et al. 2009, Tsuyuzaki & Titus 
1996). For example, previous studies in Iceland 
successfully upscaled fractional coverage of 
woody shrub species from UAV data to correct 
satellite NDVI values to support soil erosion 
monitoring (Kodl et al. 2024). Others have used 
upscaled fractional species cover to monitor 
invasive shrubs (Bergamo et al., 2023). 

Producing high resolution DEMs (3-5 cm/
pixel and positional XYZ-accuracy of ca. 
1.5  cm; Nota et al. 2022) from UAV site data 
opens the potential for complex structural 
variables to be derived, even in environments 
with low and scattered vegetation. Upscaling of 
canopy metrics using synthetic aperture radar 
(SAR) data may be useful in further estimating 
vegetation structure, due to the various 
scattering mechanisms associated with SAR and 
its application in classifying tundra vegetation 
(Ullmann et al. 2014). SAR can also be used 
to estimate surface roughness associated with 
surface sediment properties in regions with little 
vegetation cover (Gaber et al. 2015). Using high 
resolution UAV derived DEMs could provide a 
method for relating SAR backscatter to surface 
roughness that is associated with small scale 
erosional features (Ullmann & Stauch 2020). 
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