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ABSTRACT

Vegetation cover exerts a strong influence on the rate and severity of soil erosion. In Iceland, soil erosion is a
major land management issue, with accelerating rates of degradation since human occupation. Current methods
for erosion mapping and monitoring are costly and difficult to employ frequently over large regions. Satellite
remote sensing can offer synoptic and systematic information on vegetation conditions useful in environmental
monitoring. However, fine-scaled erosive features, such as small deflation patches, may not be easily identifiable
in moderate resolution imagery (10-30 m). Here the integration of Unoccupied Aerial Vehicle (UAV), Sentinel-2,
and field data is examined to bridge the gap between ground-based and spaceborne monitoring. High resolution
(< 5 cm) UAV-based land cover maps are produced for six sites, achieving high overall accuracy (> 90%)
compared to ground measurements. These data are upscaled via a regression model estimating bare soil cover,
yielding good results (R?> = 0.81). Using land-monitoring data from the Icelandic National monitoring program
GroLind, erosion severity classes are defined and mapped. This study highlights the potential of multiscale
remote sensing for estimating sub-pixel landscape information and improving automated soil erosion mapping.
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YFIRLIT

Uppskélun fiarkonnunargagna fia flygildum til ad fylgjast med jardvegsrofi ¢ nord austur halendi Islands.
Jardvegsrof er eitt af storu umhverfisvandamalum 4 fslandi i dag og hefur hradi og alvarleiki jardvegsrofs sterk
tengsl vid grodurpekju. Nuverandi adferdir vid kortlagningu og voktun jardvegsrofs a islandi eru kostnadarsamar
og erfitt er ad beita peim reglulega & stor svadi. Fjarkonnun med gervitunglamyndum getur veitt heildsteeda
mynd af astandi grodurs sem getur nyst vid umhverfisvoktun. Hins vegar getur verid erfitt ad greina smagerdar
rofmyndir, eins og rofdila, i venjulegri upplausn gervitunglamynda (10-30 m). I pessari rannsokn er sampaett
notkun flygilda (e. Unoccupied Aerial Vehicle, UAV), Sentinel-2 gervitunglagagna og vettvangsgagna skodud
sem moguleiki til ad bria bilid a milli athugana & jorou nidri og gervitunglaathugana. Landpekja sex svada
var kortlogd i harri upplausn (< 5 cm) med flygildi og gafu nidurstodurnar géda heildarndkveemni (e. accuracy,
>90%) samanborid vid vettvangsmelingar. Pessar upplysingar voru sidan skaladar upp fyrir gervitunglagdgn
med adhvarfslikani (e. regression model) til ad meta pekju dvarins jardvegs, med godum arangri (R2=0.81). Med
notkun gagna ur landvoktunarkerfinu GroLind voru rofflokkar svo skilgreindir og kortlagdir ut fra pekju 6varins
jardvegs. Rannsoknin synir fram 4 moguleikann 4 notkun fjolkvarda-fjarkénnunar til ad meta landupplysingar
ut fra myndeiningum og ag sjalfvirknivada kortlagningu jardvegsrofs.
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INTRODUCTION

Soil erosion is a geomorphic process through
which soil particles (sediments, soil aggregates,
and organic matter) are entrained and transported
away from their primary location (Poesen
2018). Through intense erosion, soils become
less fertile as nutrients are removed (Arnalds
et al. 2001). Natural erosive processes such as
rain, wind, and gravity, as well as biological
processes including trampling and burrowing by
wildlife, are typical in most landscapes (Poesen
2018). Anthropogenically induced changes in
land use and climate, however, can amplify and
accelerate erosion beyond the capability of an
ecosystem to generate new soil, causing rapid
landscape degradation (Borrelli et al. 2021,
Poesen 2018).

Vegetation cover has a strong influence on
the rate and severity of soil erosion (Duran
Zuazo et al. 2008, Gyssels et al. 2005).
Vegetation can shield erosion-prone soil from
wind and precipitation and provide support
against gravity on slopes, limiting soil loss
(Tang et al. 2021). Vegetation composition,
structure, and coverage are changing in many
high latitude regions due to climate change
and other anthropogenic pressures. The exact
nature of these changes, however, and their
impact on soil erosion is complex and not well
understood (Myers-Smith et al. 2020, Streeter &
Cutler 2020). Monitoring must be improved to
better understand the impact of vegetation cover
change on soil erosion and to effectively target
restoration efforts, such as revegetation, toward
areas showing early signs of erosion.

Regions of Iceland have experienced rapid
and severe landscape degradation since human
settlement in the 9th century, including dramatic
loss in vegetation and increase in soil erosion
(Arnalds 2015, Dugmore et al. 2009, Greipsson
2012, Olafsdéttir et al. 2001). This is particularly
true for the Highland region, which encompasses
remote wilderness areas above the potential
treeline (approx. 200-400 m a.s.l, Boulanger-
Lapointe et al. 2022) and where sub-alpine
tundra vegetation is dominant (Thorhallsdottir
1997). Grazing pressure increased dramatically
in the Highland with animal husbandry

accompanying human settlement, ~1,100 years
ago (McGovern et al. 2007). The Highland is
most sensitive to this change, due to the short
growing season and disturbance from glacial
and volcanic activity (Arnalds et al. 2023,
Dugmore et al. 2009). Disturbed vegetation
in this region is slow to recover, leaving soil
exposed to further disturbance. The soils found
in much of the Highland tend to lack strong
cohesive properties and are easily entrained
by frequent, strong winds (Arnalds 2015). The
result is the poor land conditions seen in many
parts of Iceland today, with over 39% of the
country’s total area considered to be eroded as
of 2001 (Arnalds et al. 2001, 2023).

Currently, the main source of geospatial
erosion data for Iceland comes from a series
of maps produced between 1991 and 1997
by the Agricultural Research Institute (ARI)
and the Soil Conservation Service of Iceland
(SCSI; now Land and Forest Iceland), using
field observations and manual interpretation
of Landsat 5 imagery. The project produced
coarse resolution products that categorized
erosion severity into 6 classes according to the
areal coverage of landscape features indicative
of active erosive processes, for example
Rofabards (escarpments), erosion spots, and
sand encroachment (Arnalds et al. 2001,
Arnalds 2015). These maps provide critical
quantification of land conditions on a wide
scale. However, in the 27 years since these maps
were produced, it is likely that land conditions
have changed in many regions. This includes
both the progression and regression of soil
erosion. Thus, the ability to accurately examine
and analyze current land conditions using these
maps is limited (Arnalds et al. 2023).

Satellite imagery and machine learning are
important tools that have improved the accuracy
and efficiency of many monitoring and mapping
tasks, including those related to soil erosion
(Sepuru & Dube 2018). Such tools have been
applied to regions of Iceland in previous studies.
Fernandez et al. 2022 highlighted the potential
of remote sensing for this application, using
Sentinel-2 imagery alongside topographic data
to predict erosion risk from field observations
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of erosion severity provided by the SCSI.
While the results show good accuracy, nuanced
information is lost in the broad 6-point
classification scheme, and physical attributes
important to management, such as vegetation
cover, cannot be interpreted from the results.

The Normalized Vegetation Index (NDVI) is
commonly used as a proxy for vegetation cover.
NDVI takes advantage of the divergent spectral
response of green vegetation in the red and near
infrared (NIR) portions of the electromagnetic
spectrum. In simple terms, when used as a proxy
for vegetation cover, high NDVI values are
interpreted as indicating dense, healthy green
vegetation. Low NDVI values are interpreted
as indicating a lack of vegetation and therefore
the relative dominance of bare surface cover
(Hurcom & Harrison 1998, Xiao & Moody
2005).

While NDVI can be well correlated with
vegetation cover in some settings, this is not
alwaysthecase,asNDVIvaluescanbeinfluenced
by factors such as topography and vegetation
phenology (Ayalew et al. 2020, Laidler et al.
2008). Changing climate in the Arctic, which
drives change in vegetation composition, further
breaks down this relationship. In particular, the
increase in tundra shrub cover is thought to
inflate the near infrared (NIR) portion of the
spectral profile and therefore the NDVI signal
(Juszak et al. 2014). This means that, as shrubs
encroach into an area experiencing erosion, loss
of vegetation cover may be masked by their
higher NDVI value (Kodl et al. 2024). Other
vegetation indices (VIs), such as the Normalized
Difference Red-Edge 1 (NDRE1), have shown
promise in determining vegetation cover.
Previous studies suggest that these VIs should
be considered in addition to NDVI (Andreatta
et al. 2022, Rithiméki et al. 2019). Furthermore,
other VIs show better sensitivity than NDVI for
tundra species, especially VIs using red-edge
(RE) bands (Buchhorn et al. 2013, Liu et al.
2017).

Arctic tundra landscapes display a high
degree of spatial heterogeneity, meaning that in
moderate and coarse resolution satellite imagery
various landscape features can occupy a single

pixel (Virtanen & Ek 2014). As the spectral
information of a pixel is an aggregate from the
features within it, it can be difficult to disentangle
the role that characteristics (e.g., areal coverage
& configuration) of individual features have
on spectral response from traditional field
observations. Uncrewed aerial vehicles (UAVs)
can produce very high-resolution imagery and
continue to become more accessible for research
and management communities. There are
various ways in which UAV and satellite data
can be used synergistically. One approach is the
calibration of satellite data or models applied on
satellite data using UAV data. This approach can
be used as a form of data upscaling to expand on
information initially derived from the UAV data
and to offer an alternative to traditional field
observations (Alvarez-Vanhard et al. 2021).

UAV data upscaling has been shown as
an effective method for model calibration in
fractional land cover problems relating to
tundra and similarly heterogeneous landscapes
(Bergamo et al. 2023, Riihiméki et al. 2019).
By applying machine learning at multiple
scales, linked through spatial aggregation, the
dominance of sub-pixel physical characteristics
can be estimated. Examples of the use of UAV to
upscale previous applications include mapping
fractional coverage of invasive shrub species
in northern Estonia (Bergamo et al. 2023) and
forage lichen in northern Canada (Fraser et al.
2022).

It remains difficult to capture fine variation
in soil erosion across large and remote regions
like the Highland of Iceland. Field-based
monitoring is labor intensive and coverage
limited. Satellite imagery offers broad coverage,
but sub-pixel heterogeneity is obscured. UAV
imagery provides the potential to bridge the
gap between these two scales by linking fine
resolution information to satellite data. The aim
of this study is to examine the integration of
UAV and satellite data through upscaling, as a
means for estimating bare soil and rock cover
(hereafter refer to as bare soil cover) for soil
erosion monitoring. This is accomplished by
using UAV scale image classification to train
a satellite-based model that estimates bare soil
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cover. The relationship between bare soil cover
and erosion severity in existing, field based,
land monitoring data is used to classify erosion
severity from the satellite-scale model. The
goal of this approach is to provide a framework
for improved and automated mapping of soil
erosion across the Highland of Iceland.

MATERIALS AND METHODS

Study site

The study was conducted at six sites located
in northeastern Iceland (Figure 1). Sites
were randomly chosen in the Mulaping and
Nordurping areas of the Highland, above 400 m
elevation (Arnalds et al. 2023). All sites are
located within open sheep grazing commons
(Arnalds & Barkarson 2003). The Mddrudalur
weather station nearby shows a mean annual
temperature of 1.30 °C and mean monthly wind
speed 0f 0.97 m s™! from 2007 to 2023 (Icelandic
Meteorological Office 2024). Vegetation types

= =UAV Sites

Figure 1. Location of UAV survey sites, northeastern Iceland. Survey sites marked with orange dashed lines.

in the region are a mix of heath, grasslands,
moss heaths and wetlands (Kardjilov et al.
2006). The UAV survey sites encompass a
range of erosion severity, from fully vegetated
to severely eroded arecas (Arnalds et al. 2001).
Soils in the regions are Andosolic and Vitrisolic,
the former characterized by high carbon
content, low bulk density and high water storage
capacity, whereas the latter is characterized by
low organic material and clay content, with
low water storage capacity. Andosols support
some of the most densely vegetated regions
of Iceland, whereas Vitrisols support little
biological activity, meaning that soils of this
type are exposed to transport by wind and water
(Arnalds 2015, Arnalds & Oskarsson 2009).

Data and pre-processing

UAV and Sentinel-2 Imagery

In July 2023, imagery was collected along
six 1.4 - 3.1 km transects in eastern Iceland.
Transects were used to capture as much within-
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site variance while maintaining consistent
elevation for each site to limit variation in
environmental factors. The RGB sensor onboard
a DJI Mavic 3T quadcopter UAV was used, with
the red band at 650 nm (+16 nm) the green at
560 nm (+16 nm) and the blue at 450 (+16 nm).
The UAV was flown at approximately 80 m
above ground level. Images were set to capture
80% front overlap. The width of each transect
was approximately 60 m. Best attempts were
made to conduct all flights around solar noon,
however, due to weather, flight times varied
by up to 5 hours. Differences in illumination,
however, were minimal due to the long daylight
hours during this time of year.

The UAV data were processed in Agisoft
Metashape version 2.1.0. Photogrammetric

processing was applied following the
recommended steps from the software
developers (Agisoft LLC., St. Petersburg,

Russia). Images containing excessive motion
blur were removed prior to processing.
Georeferencing was based on the GPS unit and
internal measurement unit onboard the UAV,
producing an estimated horizontal positioning
error of ~3 m. This process produced a single
orthomosaic for each of the six transects with
spatial resolutions of 4-5 cm.

Sentinel-2 data for the region was acquired
in 16-bit from the Sentinel-2 Global Mosaic
Service, using the Advanced Temporal Mosaic
tool. The temporal range was set between 31
July 2023 and 31 August 2023, returning level
2A imagery from 9 August and 29 August 2023.
The SEN2COR atmospheric correction method
and ESA cloud mask options were used (Main-
Knorn et al. 2017, Sentinel-2 Global Mosaic
Service 2014).

Vegetation indices

To provide more information to the UAV-
scale model and improve vegetation and soil
separability, two RGB VIs were calculated
using the ferra package for R v4.2.2 (Hijmans
2023, R Core Team 2022). The two VIs,
Vigreen and EXGR, were selected based on
their ability to effectively separate bare soil and
vegetation, demonstrated in a previous study

(Vieira & Rodrigues 2021). To calculate these
VIs the RGB data was first normalized with a
two-step process using equations 1 and 2, where
R, G, and B are the original values, R, G_ |
and B_are the maximum of the 8-bit channels
(255), and 1, g, and b are the final normalized
spectral components (Guijarro et al. 2011,
Marcial-Pablo et al. 2019, Vieira & Rodrigues
2021). The VIs were then calculated using
equations presented in Table 1.
Ry=—-G,=-—%B, =2

n - n — n —
Rmax Gmax Bmax
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R G B,
(2) r= n g f— n b — n
Ry+Gn+Bp Ry+Gn+Bp Rp+Gp+Bp

Four VIs were calculated with the Sentinel-2 data
to be used in the satellite scale model. As with the
UAV VIs, these indices are meant to emphasize
vegetation and to improve bare soil detection.
GCI, MSAVI2 and NDVI were selected based
on their performance when previously applied to
identify overgrazing hotspots (Table 2, Harmse
et al. 2022). Additionally, NDRE1 was selected
based on its potential shown in a previous study
to identify bare soil and performance in regions
of low vegetation cover (Table 2, Andreatta et
al. 2022). Sentinel-2 bands 5 and 6 are 20 m
resolution and therefore were resampled, using a
bilinear approach, to match the 10 m resolution
of the remaining bands used.

Table 1. Description of RGB vegetation indices used
for UAV scale classification.

Name Equation References
Vegetation Viereen—2—" (Gitelson et
Index Green green =gty al. 2002)

Excess Green
minus Excess
Red

EXGR = (2g —r—b) — (1.4r — g) (Meyer &
Neto 2008)

In-situ bare soil cover measurements

To compare bare soil cover estimates based
on the UAV classification to those that would
be recorded by a field technician, ten randomly
selected points along each transect were overlaid
with a 50 cm-by 50 cm quadrat, prior to each
UAV flight. An image of each quadrat placement
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Table 2. Description of Sentinel 2 vegetation indices used for the satellite scale regression model.

Name Formula Bands  References
NIR i
Green Gel = (G y—1 8,3 (Gitelson et
Chlorophyll reen al. 2005)
Index
Modified Soil 2% NIR + 1,/(2* NIR + 1)2 — 8(NIR — Red) 84 (Qietal.
. MSAVI2 =
Adjusted 2 1994)
Vegetation
Index 2
i NIR — Red
Normalized NDVI = ( ) 8.4 (Tucker
Difference (NIR + Red) 1979)
Vegetation
Index
Normalized NDREL = (RE740 — RE;g5) 6,5 (Gitelson &
Difference Red (RE740 + RE705) Merzlyak
Edge 1 1994)

was taken at waist height (~105 cm) with a
digital camera (Figure 2), and the percent bare
soil within the quadrat was recorded. For later
identification of the exact quadrat placements in
the UAV imagery, a flag was placed at the center
of each quadrat, and the location was recorded
with a Garmin Etrex 10 handheld GPS unit with
an average positional error of ~5 m.

Each quadrat placement was identified in the
orthomosaics, and a 50 cm-by 50 cm polygon was
drawn around the flag, using the corresponding
field photograph to inform polygon delineation.
To arrive at a classification-based bare soil
cover value that could be directly compared to
the field observation, the percent of bare soil
cover was calculated for each polygon, using
the zonal histogram tool in QGIS v3.28 (QGIS
Development Team 2009). The classification-
based estimate was evaluated using Root Mean
Square Error (RMSE).

Soil erosion data

GroLind is the most extensive and up to date land
monitoring initiative from the Soil Conservation
Service of Iceland (now Land and Forest

Iceland). Each monitoring site consists of a 50
x 50 m plot. Approximately 200 sites are visited
annually, resulting in a five-year revisit time
for each site. At these sites variables relating
to ecological status are recorded, including
vegetation height and cover, soil depth, soil
type, and erosion rating (Marteinsdoéttir et al.
2021). The erosion rating is based on the system
outlined by Arnalds et al. (2001) which considers
erosional features, typically defined by areas
of exposed soil, such as sand encroachment,
erosion spots, and Rofabards, as well as general
vegetation cover. This system uses qualitative
visual observations classified on a five-point
scale, with 0 representing no erosion and 5
representing extreme erosion. Vegetation cover
is also estimated based on visual observation
on a scale of 1-5 (i.e. 1: 91-100%; 2: 67-90%;
3: 34-66%; 4: 11-33%; 5: 0-10%). For our
analysis, we considered vegetation cover as a
proxy of bare soil cover, since the total cover
at one site is only made of vegetation and bare
soil, including exposed rocks (e.g. a vegetation
cover rating of 1 means both high vegetation
cover and low bare ground cover). We used data
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from sites visited in 2019 (n=79) to examine the
relationship between erosion severity and bare
soil cover (Figure 3d).

UAV and satellite data processing

UAV-scale classification

For the UAV-scale classification training and
validation, data were generated for 5 class
types: bare soil (dark), bare soil (light), green
vegetation, non-green vegetation (e.g. white
lichen, flowers), and water (Figure S1). The
goal of using these classes rather than a binary

Figure 2. Example of quadrat placements used for field validation of the UAV-scale classification.

1 o 4 2 = o fulf X

bare soil presence-absence scheme was to
reduce error by providing narrow classes with
less variation in spectral signature. Along
each transect ten 50 x 50 cm polygons were
manually delineated for each class, in QGIS
(QGIS Development Team 2009), resulting
in 50 polygons per transect. The location of
the polygons was determined by examining
the RGB orthomosaics and selecting areas of
homogeneous, class representative cover.

The two VIs, of the normalized RGB bands
and the raw orthomosaic RGB bands, were used
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Figure 3. Workflow for UAV data upscaling and erosion severity mapping. a) UAV data treatment after
preprocessing, b) Sentinel-2 satellite data treatment, ¢) UAV and Sentinel-2 satellite data integration, d)
integration of GroLind data for erosion severity mapping.

as predictive variables. Each pixel within the
polygons (~360 per polygon) was sampled to
extract values for these variables. This provided
approximately 18,000 sampled points per
transect. These data were split randomly into
training (70%) and validation (30%) sets, using
a stratified approach to ensure an equal number
of training and validation points between the
five classes.

A random forest classification model was
implemented using the caret and randomForest
packages in R (Kuhn 2008, Liaw & Wiener

2002). Random forest was chosen based on the
accuracy of the model for classifying land cover
from RGB UAV imagery that was demonstrated
in previous studies (Bergamo et al. 2023, Fraser
et al. 2022). An individual model was fit for
each transect to improve site-specific accuracy
due to the previously-mentioned variation in
illumination conditions (Kodl et al. 2024). Since
an independent testing dataset was not available,
a 10-fold cross validation, which provides good
prediction estimates (Wadoux et al. 2021), was
used to test model accuracy. The number of
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variables to randomly sample at each split, a
parameter known as mtry, was optimized using
a grid search, testing values between 1 and 8.
The number of trees was set to a constant of 500.
A confusion matrix was produced for each site
using the validation data. Accuracy and Kappa
values were used to assess model performance.
The model with optimal parameterization for
each site was applied to a stack of raster layers
containing the eight variables.

Upscaling

To upscale the UAV-scale classification, a
within-pixel coverage method was used to
find percent bare soil (Bergamo et al. 2023,
Riithimédki et al. 2019). A grid was generated
directly from the Sentinel-2 data to match
the 10-m spatial resolution. Segments of this
grid were clipped to match the extent of each
transect. The zonal histogram tool in QGIS was
used to compute the number of pixels in the
UAV-scale classification assigned to each of
the five classes, within each grid cell. The two
bare soil classes were merged and compared to
the occurrence of the remaining classes within
each grid cell to determine the percent bare soil
coverage (0-100).

Satellite-scale regression model

A point was placed at the center of each grid
cell produced in the upscaling process. The
calculated percent bare soil for each cell was
then transferred to the corresponding point. The
values from each of the Sentinel-2 variables,
bands 2-8, and the four VIs were sampled at
each point. This produced 18,287 data points.
These data were split into training (70%) and
validation (30%) sets.

A random forest regression model was
implemented on the training data using the
caret and randomForest packages in R (Kuhn
2008, Liaw & Wiener 2002). Random forest
was chosen based on its accuracy in upscaling
applications presented in previous studies
(Fraser et al. 2022). A model fitting procedure,
like that used for the UAV-scale classification
model, was implemented with 10-fold cross
validation. The mtry parameter was optimized

using a grid search with values between 1 and 11.
The number of trees was set to a constant of 500.
The best model was chosen based on RMSE and
R2. The best model was run on the validation set,
and the RMSE and R? were calculated to assess
the model’s predictive performance. The final
model was applied to a stack of raster layers
containing the 11 variables.

Erosion severity

The GroLind data were subset to contain only
points within the Highland region (above 400m
elevation), leaving 76 sites collected in 2019.
A Pearson correlation test was run to establish
if there is a significant relationship between
the erosion severity and bare soil cover data
that was collected in the field by the GroLind
program. The results indicated a strong
positive and significant relationship (r=0.82, p
< 0.005). A linear regression was fit to estimate
erosion severity from bare soil cover in this
dataset. The satellite-scale continuous bare
soil cover model was then reclassified to the
five-point bare soil cover ranking used by the
GroLind program, and the linear regression
was applied to these data to estimate soil
erosion severity for each pixel in the satellite
images. Non-whole values of erosion severity
were reclassified to the nearest whole number
to fit the five-point GroLind classification
scheme (e.g. 1.5 — 2).

RESULTS

UAV-scale classification

The random forest classifier produced an overall
accuracy of 96.6% across all six sites with a
Kappa of 0.95 and RMSE of 15.36% (Table
3; see Table S1 for confusion matrix and F-1
scores). The best results were achieved at site
400-5, with an accuracy of 98.6% and Kappa
of 0.98. The lowest results were achieved at
site 400-3 with an accuracy of 92.2%, a Kappa
of 0.90, and RMSE of 40.17%. Aside from
site 400-3, all sites achieved accuracy greater
than 95%, Kappa scores greater than 0.94, and
RMSE less than 9%.
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Table 3. Summary of the accuracy results for UAV-scale classification at each site and overall. accuracy and
Kappa based on cross validation, RMSE based on quadrat fractional coverage. Due to human error in the field
the quadrat points for two sites (400-1, 400-5) fell outside of the UAV imagery as a result the quadrat based
RMSE values for those two sites could not be calculated.

Classification metrics

Field data metric

Site Accuracy (%) Kappa RMSE (%)
Overall 96.6 0.95 15.36
400-1 97.4 0.97 6.67
400-3 922 0.90 40.17
400-4 96.6 0.94 -
400-5 98.6 0.98 -
500-3 97.8 0.97 8.78
500-6 97.0 0.96 5.76

Upscaling UAV data

Relatively large erosional features, where
continuous areas of bare soil are exposed, are
well represented in both the UAV classification
and the aggregated data (Figure 4). Away
from the center of these features, exposed soil

results. Due to the aggregation inherent in the
upscaling process, however, this pattern is
obscured when the pixel size becomes much
larger than individual erosional patches. While
the aggregated data tend to show the pattern of
increased vegetation with distance away from

erosional features, the distribution of exposed
soil within a cell is lost (Figure 4).

becomes fragmented and appears in smaller
patches as vegetation cover increases. This
pattern is distinct in the UAV-scale classification

Bare soil:

Fractional bare soil cover:

Oo% M 100%

Figure 4. UAV-scale classification of bare soil shown in black (presence of bare soil), overlain with fractional
bare soil coverage produced from aggregation during the upscaling process, site 400-3. Black arrow on the left
panel shows an example of an erosional feature edge being obscured due to aggregation.
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Satellite regression and erosion severity

The satellite-scale percent bare soil cover
regression model produced an R? of 0.814 for all
sites (Figure 5a). The site-specific results show
a wide range of R? values. Site 400-1 (Figure
5b) produced the lowest R* (0.403), showing
a large number of points estimated to have a
greater bare soil and cover than classified in the

UAV data. Site 500-3 produced the highest R?
(0.924). The final bare soil cover map (Figure
6a) displays upscaled results, allowing for visual
interpretation as well as identification of gaps
and errors. The soil erosion rating map (Figure
6b) presents those same results using the SCSI
classification scheme.

a)

50
Observed (%)

Predicted (%)

)
Observed (%)

50
Observed (%)

4003
(R=0.748)

Predicted (%)

=

Observed (%)
500-3

(R7=0924)
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Figure 5. Scatter plots showing the percent bare soil coverage from the satellite-scale regression
model (predicted) compared to the aggregated UAV-scale classification (observed), best fit line
shown in orange. Top (a) panel shows the results for all six sites overall. Bottom (b-g) panel shows
the results at each site.
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Figure 6. a) Percent bare soil cover map from upscaled UAV data, b) erosion severity map derived from the
upscaled bare soil cover ranked using the GroLind erosion severity classes.
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DISCUSSION

This study illustrates the potential of integrating
UAV and satellite data to extract physical
parameters, in this case vegetation cover, for
mapping and monitoring soil erosion in tundra
environments. The methods presented here
show that UAV data upscaling with a random
forest regression model can provide continuous
estimates of percent bare soil cover at the
satellite pixel scale. The use of UAV data in this
way could provide a cost-effective alternative
to on-foot field measurements and produce
high quality training data for semi-automated
mapping from satellite imagery. Parameters
upscaled from UAV data could be integrated
with existing soil erosion data generated by the
ongoing GroLind program to expand the scope
beyond measured locations (Bergamo et al.
2023).

UAV-scale classification

The UAV-scale random forest classifications
based on RGB VIs were able to separate bare
soil and vegetation with accuracies comparable
to multispectral UAV based classifications
(Furukawa et al. 2021). The use of multiple
VI’s and a five-class scheme builds upon results
of previous studies that implemented a binary
scheme on RGB digital number data alone
(Rithimaki et al. 2019). Due to the single-
image width of the orthomosaics used in this
study, digital elevation models (DEMs) could
not be generated for the UAV sites. The use
of such DEMs in the UAV-scale classification
could further improve accuracy by generating
point clouds that can be used to assess textural
information (Bergamo et al. 2022).

The site-specific classification accuracy
shows low variation, with a range of 6.4% and
0.08 in accuracy and Kappa measures among
sites, respectively. Other studies that have
implemented RGB UAV data for vegetation
classification tasks show similar results across
a range of environmental settings (Bergamo et
al. 2023, Furukawa et al. 2021, Rithiméki et al.
2019). The low variation in accuracy between
sites may be due in part to the site-specific
model approach taken here. While fitting an

individual model for each site is more time
consuming, compared to fitting a single model
across all sites, it likely limits the error induced
by variations in illumination and weather
conditions (Furukawa et al. 2021, Wang et al.
2023). This is an important consideration for
implementing these methods across a broader
area and in regions where weather can change
dramatically over short periods, such as in
northeastern Iceland.

Upscaling and satellite scale mapping

The satellite-scale random forest regression
model shows high overall agreement (R?* =
0.814) with the UAV based bare soil cover data
(Figure 4 & 5a). These results highlight the
usefulness of these models for estimating bare
soil cover across a Sentinel-2 pixel. Previous
studies have illustrated the power of random
forest regression for estimating fractional
cover of invasive plant species from satellite
data, producing accuracy like that shown here
(Kattenborn et al. 2019, Shiferaw et al. 2019).
While random forest regression appears to
be a robust model for UAV upscaling, based
on these results and those of previous studies,
various models should be examined through
more-exhaustive performance measures and
for variables beyond those related to vegetation
(Fraser et al. 2022, Kattenborn et al. 2019)

The site-specific regression accuracies show
large variations, with R? values much lower than
the overall value. The lowest R? (0.403) was
produced at site 400-1 (Figure 5b). Site 400-1
is characterized by a consistent pattern of many
small bare soil patches (5 - 20 cm diameter) and
a high degree of non-green vegetation cover
(i.e. areas covered by white lichen or flowering
plants), which are common in Iceland. The VI’s
used for the satellite-scale regression model
largely rely on the NIR and red bands, as do
most widely used VI’s. The spectral signature
produced by non-green vegetation at these
wavelengths is not as easily distinguished from
bare soil as is green vegetation (French et al.
2008). This is likely why the model predicts
higher bare soil cover at site 400-1 than is shown
in the UAV data. The inclusion of shortwave



40  ICELANDIC AGRICULTURAL AND ENVIRONMENTAL SCIENCES

infrared (SWIR) information or indices may
improve the performance of the model for areas
dominated by non-green vegetation, but that
would come at the expense of spatial resolution.
Green and non-green vegetation show increased
separability in the 2200 nm range, thus the
use of Sentinel-2 band 12 (2190 nm) could
be used in future applications where higher
spatial accuracy is not a prerequisite (Amin et
al. 2021). Despite the lack of NIR and SWIR
information in the UAV data, the classification
achieved good results in separating bare soil
and non-green vegetation for site 400-1 (Table
3). This is likely due to the high resolution
of the UAV data, suggesting that increased
resolution may be able to improve separability
of spectrally similar cover types. Therefore,
higher resolution multispectral satellite data, for
example PlanteScope (3 m), may better detect
non-green vegetation.

Finally, the UAV sites largely missed regions
of very dark sands and gravel, like those near
site 400-4 and 400-5 (Figure 1). In the bare soil
cover map produced by the upscaling process
(Figure 6a), regions with this composition appear
to have higher vegetation cover than expected.
As a result, the erosion severity assigned to these
areas tends to be lower than anticipated. While the
sampling design was meant to capture changes
in relation to the elevational gradient, a different
sampling strategy would be needed to capture the
spectral signature of these distinct areas.

Future work

While the fraction of bare soil to vegetation
cover over a given area is strongly related in
many areas to soil erosion, it is not the sole factor
(Zhongming et al. 2010). This study has shown
UAV RGB data upscaling to be an effective
method for estimating variables related to soil
erosion. In addition to improving estimates of
bare soil cover, future efforts should investigate
additional parameters such as soil moisture, soil
surface roughness and phenological stages that
may benefit from upscaling. Looking to existing,
robust, empirical models, such as the Revised
Universal Soil Loss Equation (RUSLE), for
parameters that may relate to physical factors

that can be derived and upscaled from UAV data
provides a promising path forward (Felix et al.
2023).

Vegetation parameters that relate to soil
erosion and that may be explored using methods
like those presented here include vegetation
type and structure. Erosion severity influences,
and is influenced by, the types of vegetation
present as well as their distributions over a
given area (Jiao et al. 2009, Tsuyuzaki & Titus
1996). For example, previous studies in Iceland
successfully upscaled fractional coverage of
woody shrub species from UAV data to correct
satellite NDVI values to support soil erosion
monitoring (Kodl et al. 2024). Others have used
upscaled fractional species cover to monitor
invasive shrubs (Bergamo et al., 2023).

Producing high resolution DEMs (3-5 cm/
pixel and positional XYZ-accuracy of ca.
1.5 cm; Nota et al. 2022) from UAV site data
opens the potential for complex structural
variables to be derived, even in environments
with low and scattered vegetation. Upscaling of
canopy metrics using synthetic aperture radar
(SAR) data may be useful in further estimating
vegetation structure, due to the various
scattering mechanisms associated with SAR and
its application in classifying tundra vegetation
(Ullmann et al. 2014). SAR can also be used
to estimate surface roughness associated with
surface sediment properties in regions with little
vegetation cover (Gaber et al. 2015). Using high
resolution UAV derived DEMs could provide a
method for relating SAR backscatter to surface
roughness that is associated with small scale
erosional features (Ullmann & Stauch 2020).
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